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Figure 1. Multiomic immunology lets you access multiple types of 
information at once for thousands to millions of single cells.
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Section 1

Introduction
Immunologists have long relied on methods that provide analysis of 
individual immune cells to understand the immune system’s diversity 
and complexity. While technologies such as flow or mass cytometry 
have been pivotal for answering complex questions in immunology, 
continuing advances in the field will require the integration of multiomic 
single cell data.

Single cell multiomics for immunology provides access to multiple readouts at once for  
thousands to millions of single cells, giving you more from your single cell analyses. 
Imagine, instead of getting one measurement—protein expression—you could get everything 
at once: protein and gene expression, T- and B-cell receptor clonotypes, and antigen 
specificity; or coupled transcriptomic and epigenetic data. Instead of whittling down your 
markers of interest to a small panel that needs to be redesigned whenever new proteins are 
included, multiomic immunology lets you stain for all possible markers of interest at the same 
time, without the challenges of spectral overlap or compensation matrices. You can also 
combine immunophenotypic profiling and clonotype analysis with a readout of cell type and 
state for every cell. Single cell multiomic immunology means you can learn more from a single 
sample, without having to split it into parts, and improve reproducibility by profiling thousands 
of cells at a time and easily aggregating or comparing samples. 

Enrich cells   
(optional)
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From what  
progenitor are  
my cells derived?

What cell types  
are responsible  
for disease?

What genes are 
important for 
immune activation?

How rampant is an 
ongoing infection?

Section 2

Explore what you can do 
with multiomic single cell 
immunology
Researchers have already started to answer a diverse set of 
immunological questions using single cell approaches. Here are some 
examples of immunology publications showing the unique ways these 
questions can be approached with single cell and spatial technology.

Combine single cell gene expression analysis with  
lineage tracing
Publications: 10, 36, 40

Discover rare cell types, subtypes, and novel functions
Publications: 24, 25, 27, 28, 81

Understand cellular interactions that contribute to disease  
and identify novel therapeutic targets
Publications: 21, 60, 68, 75

Screen hundreds of genetic edits simultaneously with 
single cell CRISPR screens
Publications: 14, 46, 47, 62

Capture host and pathogen RNA transcripts from 
the same cells
Publications: 59, 60, 61, 66, 67
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What dictates 
patient disease 
severity and  
response to 
therapy?

Measure vaccine response
Publications: 7, 64, 73, 74, 87, 89

Discover antibodies
Publications: 1, 4, 6, 8

Identify expanded T-cell or B-cell receptor clonotypes
Publications: 19, 22, 67

Identify immune factors that contribute to different disease 
response or prognosis
Publications: 71, 76, 77

Track patient responses to cell therapy
Publication: 53

Characterize immune cell activation state alongside clonotype  
and antigen binding specificity
Publications: 55, 63

Identify the gene regulatory networks that govern 
T-cell exhaustion
Publication: 45

How do I 
understand the 
immune response 
to vaccination or 
infection in patients?
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Multiomic Cytometry
Turn a next-generation sequencer into an ultra-high 
parameter cytometric detector to profile hundreds of protein 
markers at once, with optional transcriptome, T- and B-cell 
receptor sequences, or antigen specificity on top.

Immune Receptor Mapping
Characterize antigen specificity and phenotype with 
protein markers and/or gene expression to track vaccine 
response and accelerate antibody discovery. 

Single Cell ATAC
Survey the physical structure of the genome by identifying 
regions of open chromatin to reveal areas of active gene 
transcription, regulatory regions, and binding site motifs.

Targeted Gene Expression
Enrich sequencing libraries for your transcripts of interest 
using pre-designed or custom panels to focus on the 
genes that matter most.

Single Cell Gene Expression
Obtain a digital readout of gene expression levels that 
lends insight into cellular heterogeneity, diversity, 
development, function, and response to external stimuli.

Single Cell CRISPR Screening
Directly assess CRISPR-driven gene edits or knockdowns 
and resulting gene expression phenotypes cell by cell  
to dissect molecular underpinnings of human immunity.

Spatial Transcriptomics and Proteomics
Visium Spatial Gene Expression and Spatial 
Proteomics provide transcriptome and protein 
readouts from intact tissue sections to complement 
or extend your single cell analyses.

Single Cell Immune Profiling
Get full-length, paired T- and B-cell receptor sequences, so you 
can match clonotype expansion to cell type and state, and 
generate functional receptors or antibodies for in vitro testing.

Single Cell Multiome ATAC + Gene Expression
Profile both the transcriptome and epigenome simultaneously  
in the same single cells, enabling deeper characterization of  
gene regulatory networks and cell state.

Tools for high resolution 
multiomic immunology
Characterize complex cell populations by profiling hundreds of cell surface proteins along with 
gene expression and more, cell by cell, to gain an intricate picture of immunology and accelerate 
your discoveries with comprehensive solutions from 10x Genomics.

= mRNA = CRISPR perturbation = Chromatin accessibility

= T-cell receptor = Cell surface protein

https://www.10xgenomics.com/products/multiomic-cytometry
https://www.10xgenomics.com/products/single-cell-immune-receptor-mapping
https://www.10xgenomics.com/products/single-cell-atac
https://www.10xgenomics.com/products/targeted-gene-expression
https://www.10xgenomics.com/products/single-cell-gene-expression
https://www.10xgenomics.com/products/single-cell-crispr-screening
https://www.10xgenomics.com/products/spatial-gene-expression
https://www.10xgenomics.com/products/spatial-proteomics
https://www.10xgenomics.com/products/spatial-proteomics
https://www.10xgenomics.com/products/single-cell-immune-profiling
https://www.10xgenomics.com/products/single-cell-multiome-atac-plus-gene-expression
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Depending on your biological question, different single cell approaches may be desired.  
If you want to study vaccine response or identify novel antibodies, Single Cell Immune 
Receptor Mapping can provide functional clonotype information and antigen binding 
specificity. For comprehensive phenotyping by gene expression and protein, Multiomic 
Cytometry may be your best choice. When you need to understand gene regulatory networks, 
Single Cell ATAC or Single Cell Multiome ATAC + Gene Expression can generate the data you 
require. Refer to the Tools for high resolution multiomic immunology section for a full list of 
single cell applications from 10x Genomics, or explore the product pages at 10xgenomics.com.

Sample type & preparation
It is critical that you obtain a clean single cell suspension free of cell debris, with minimal cell 
aggregates and high viability (>70%). It is also important to know the size range of the cells 
studied. The cell size is usually correlated with the number of transcripts expressed in the cell. 
A wide range of cell sizes (up to 30 μm) are compatible with Chromium Single Cell Next GEM 
Chips. In general, cell preparation protocols will vary depending on the tissue’s origin and the 
cell types studied. Each tissue type is unique, and thus, it is critical to optimize sample 
preparation before starting any single cell experiment. We recommend starting by reviewing 
our Cell Preparation Guide. Find more answers to common questions about sample prep on 
our Sample Prep FAQs page. We also have sample prep–focused webinars available for 
viewing in our Videos library.

Sample processing
The ability to process samples quickly after isolation or tissue dissociation is critical in 
maintaining cell integrity and preserving each cell’s transcriptome. Be aware that any sample 
manipulations may adversely affect gene expression profiles, cell states, or cell viability and 
introduce bias into the study (Van Den Brink et al., 2017). 

01  
Decide on the best 
single cell application

02  
Preparing samples

Section 3

Planning your experiment
Before starting your single cell experiments, we recommend that you 
consider several key factors to help guide your experimental design  
and determine how to best answer your research questions.

01 02 03 04

https://www.10xgenomics.com/products/single-cell-immune-receptor-mapping
https://www.10xgenomics.com/products/single-cell-immune-receptor-mapping
https://www.10xgenomics.com/products/multiomic-cytometry
https://www.10xgenomics.com/products/multiomic-cytometry
https://www.10xgenomics.com/products/single-cell-atac
https://www.10xgenomics.com/products/single-cell-multiome-atac-plus-gene-expression
http://10xgenomics.com
https://support.10xgenomics.com/single-cell-vdj/sample-prep/doc/demonstrated-protocol-single-cell-protocols-cell-preparation-guide
https://kb.10xgenomics.com/hc/en-us/sections/360000343772-Sample-Prep-Cells
https://www.10xgenomics.com/videos/
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Cell enrichment
When characterizing rare cell populations, for applications such as immune receptor mapping 
or antibody discovery, enriching for cells of interest prior to generating single cell partitions 
can help ensure adequate numbers of your cells of interest. The Chromium system is 
compatible with FACS and bead- or column-based enrichment methods. 

Cells versus nuclei
While some applications, such as Multiomic Cytometry or Immune Receptor Mapping, require 
a single cell suspension as input, others, including Single Cell ATAC and Single Cell Multiome 
ATAC + Gene Expression, require nuclei isolation. Cells are recommended for Single Cell 
Immune Profiling, but either cells or nuclei can be used for gene expression analysis with 
Single Cell Gene Expression. 

Available sample types can also dictate whether cells or nuclei must be used. For frozen tissue 
or archival samples, nuclei must be isolated directly. Alternatively, tissue can be dissociated 
and cryopreserved immediately after it is received, enabling cells to be stored long term. 

Species compatibility
Single cell gene expression products from 10x Genomics have been used successfully on a 
wide range of organisms. The capability to extend single cell gene expression analysis to other 
species may depend on the quality of the available reference annotation. Similarly, measuring 
cell surface proteins in other species requires effective antibody reagents with oligonucleotide 
conjugations. Targeted Gene Expression pre-designed or custom panels are provided only for 
human genes, although a small number of exogenous sequences, such as reporter genes, can 
be added. Single Cell Immune Profiling provides ready-made primers for amplification of 
human or mouse T- or B-cell receptor transcripts, but experimental design is flexible and 
other species have successfully been clonotyped using custom primers (L Goldstein et al., 2019). 

Number of cells
Deciding on the number of cells required depends on the expected cellular heterogeneity in 
the sample, the number of cells available, the minimum frequency expected of desired 
subpopulations, and the minimum number of cells of each cell type desired for data analysis 
(see online tool: satijalab.org/howmanycells). If the sample diversity is not known, a high 
number of cells at low sequencing depth may be the most flexible option to obtain a 
representative proportion of the cell population and meaningful biological information. Often, 
greater cell number, rather than sequencing depth, improves cell classification ability ( J Ding 
et al., 2020). The Chromium system can recover up to ~65% of the cells loaded with a low 
doublet rate (0.9% per 1000 cells). For highly heterogeneous samples, thousands of cells may 
be required to fully resolve each subpopulation. However, the high cell recovery rate also 
makes Chromium suitable for samples with limited cell numbers.

Number of replicates
Determining the number of replicates depends on the research project, the type of sample, 
and the number of cells required in the study. The matter of biological replicates is still an 
open question in the field. In some studies, one sample alone can be seen as sufficient—with 
each cell representing a biological replicate, and different samples from different individuals 
accounting for the variability of a particular biological process. In other studies, to mitigate 
biological variability occurring in small cell populations across time, it can be beneficial to 
computationally aggregate cells from different samples to cover all aspects of the cell 
population being studied. Other cases may require the use of multiple replicates derived from 
a single sample to increase the total number of cells in the study.

03  
Ensuring reliability 

https://kb.10xgenomics.com/hc/en-us/articles/360048826911-What-are-the-best-practices-for-flow-sorting-cells-for-10x-Genomics-assays-
https://support.10xgenomics.com/single-cell-vdj/sample-prep/doc/demonstrated-protocol-enrichment-of-cd3-t-cells-from-dissociated-tissues-for-single-cell-rna-sequencing-and-immune-repertoire-profiling
https://support.10xgenomics.com/single-cell-gene-expression/sample-prep/doc/demonstrated-protocol-isolation-of-nuclei-for-single-cell-rna-sequencing
https://support.10xgenomics.com/single-cell-gene-expression/index/doc/demonstrated-protocol-fresh-frozen-human-peripheral-blood-mononuclear-cells-for-single-cell-rna-sequencing
https://satijalab.org/howmanycells
https://www.nature.com/articles/s41598-020-76972-9
https://www.nature.com/articles/s41598-020-76972-9
https://www.frontiersin.org/articles/10.3389/fcell.2018.00108/full
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Batch effects
Batch effects can be introduced at any stage of the workflow and are primarily due to 
logistical constraints that result in different preparation times, operators, and handling 
protocols. The 10x Genomics Chromium system demonstrates minimal technical variability 
across a variety of technical replicates. When combining data from multiple libraries, we 
recommend equalizing the sequencing read depth (depth normalization) between libraries 
before computationally merging to reduce batch effects introduced by sequencing. In 
addition, a number of computational tools including Seurat, scran, and scrone can correct 
batch effects. Cell Ranger can also perform batch correction for gene expression libraries.

Sequencing depth
The sequencing depth per experiment for gene expression libraries is dependent on total 
mRNA content in individual cells, and the diversity of mRNA species. In general, at the same 
transcript diversity, cells expressing a low amount of mRNA will require less sequencing depth 
than cells expressing a large amount of mRNA. When sequencing cost or capacity is limiting, 
there is often a trade-off between sequencing a higher number of cells versus sequencing a 
lower number of cells with more reads, or breadth versus depth. Single cell libraries for T- or 
B-cell receptor sequence, antigen specificity, protein markers, and CRISPR guides require less 
sequencing depth (minimum 5,000 read pairs per cell) than single cell ATAC (minimum 25,000 
read pairs per cell) or single cell gene expression libraries (minimum 20,000 read 
pairs per cell).

10x Genomics single cell libraries are compatible with short-read sequencers and available in 
a dual indexing configuration. Our single cell gene expression workflows use unique molecular 
identifiers (UMIs) to barcode each transcript molecule before amplification takes place, 
resulting in a digital gene expression profile while accounting for PCR amplification bias.

04  
Sequencing 
considerations

http://go.10xgenomics.com/scRNA-3/technical-replicates
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/aggregate
https://www.nature.com/articles/nbt.4096
https://f1000research.com/articles/5-2122/v2
https://www.nature.com/articles/nbt.2931
https://www.nature.com/articles/s41467-020-14482-y
https://support.10xgenomics.com/single-cell-gene-expression/sample-prep/doc/technical-note-resolving-cell-types-as-a-function-of-read-depth-and-cell-number


910x Genomics The essential guide: Multiomic single cell immunology

Multiomic immunology solutions from 10x Genomics come with intuitive software for data analysis and visualization. 

Simultaneously measure single cell modalities

Go from DNA sequence to immunophenotype with a single software package

Interactively explore your multiomic data

Take your analysis further with third-party tools

Gene expression

Cell surface protein

Full-length, paired V(D)J sequence

Antigen specificity

Chromatin accessibility

CRISPR perturbation

Gene and protein expression data
Seurat, Scanpy, Bioconductor

Immune repertoire data 
Immunarch, VDJ tools, scRepertoire 

Loupe Browser lets you visualize and explore your  
results with point-and-click accessibility to:

Enable manual annotation of cell clusters

Import and overlay clonotype information

Re-cluster cells based on alternative features such as protein markers

Getting started  
with data analysis

Cell Ranger provides a count matrix 
consisting of columns for every cell barcode and 
rows for all measured features, including genes 

for transcriptome analysis, protein markers,  
and bound antigens or pMHC multimers. 

Cell Barcodes
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When applicable, Cell Ranger will also 
perform assembly and annotation of 

supported immune repertoire 
clonotypes, including full-length,  

paired V, D, and J sequences. 

For some questions, it may be helpful to work with a bioinformatician specializing in single cell sequencing 
data. Sharing some biological context can help them zero in on data most relevant to your research question. 
For example, how many different cell types are expected? Were cells sorted before sequencing, so that one 
cell type should dominate the population? How many cells were targeted, and at what sequencing depth? 
Of course, specific data analysis questions can also be directed to the expert 10x Genomics Software Support 
team at support@10xgenomics.com. 

Working with a bioinformatician:

Cell Ranger is our suite 
of analysis pipelines that 
turn your raw sequencing 

data into results. 

https://satijalab.org/seurat/
https://github.com/theislab/scanpy
https://www.bioconductor.org/
https://immunarch.com/
https://github.com/mikessh/vdjtools
https://github.com/ncborcherding/scRepertoire
mailto:support%4010xgenomics.com?subject=
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Publications
From immune cell discovery to therapeutic development, there are already a wealth of publications highlighting the power 
of single cell immunology that can help guide your own investigations.
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Application note
Discover how 10x Genomics technology is “Redefining 
Cellular Phenotyping” with this in-depth study of clonal 
expansion and antigen binding after viral infection. 

Learn more   

Support
Visit the support site for documentation, software,  
and datasets that will help you get the most out of 
your 10x Genomics products.

Learn more   

Solutions and products
Along with our suite of complete solutions, we offer  
an ever-growing catalogue of services to help you  
find the answers to your research questions.

Learn more   

Research snapshots
Explore how immunologists are leveraging 
single cell technologies to answer diverse questions 
in immunology.

Learn more   

10x Genomics compatible products
Access our list of key partner products that have  
been certified compatible to work with our  
various solutions.

Learn more   

10x Blog
Keep up to date with the 10x Genomics Blog,  
where you’ll find everything from tips and tricks 
to the latest 10x news.

Learn more   

Resources from  
10x Genomics

<https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_AN038_Single-Cell-Antigen-Specific-T-Cell-Response_Letter_Digital.pdf>
http://support.10xgenomics.com
http://10xgenomics.com/solutions
<https://www.10xgenomics.com/resources/research-snapshots/?research-area=immunology>
http://10xgenomics.com/compatible-products
http://10xgenomics.com/blog
https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_AN038_Single-Cell-Antigen-Specific-T-Cell-Response_Letter_Digital.pdf
https://www.10xgenomics.com/resources/research-snapshots/?research-area=immunology&gt;
http://support.10xgenomics.com
http://10xgenomics.com/compatible-products
http://10xgenomics.com/solutions
http://10xgenomics.com/blog
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